Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 387: 110793, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37949423

RESUMO

The chemotherapeutic agent paclitaxel (PTX) causes testicular toxicity due to oxidative stress. Parthenolide (PTL), the active ingredient of the Tanacetum parthenium plant, is used to treat inflammation, dizziness, and spasms. In the present study, we evaluated the therapeutic effect of PTL on PTX-induced testicular toxicity in rats and its role in reproductive function. To this end, 6 groups were formed: control, PTX, sham, T1, T2, and T3. After testicular toxicity was induced in rats with 8 mg/kg PTX, the rats were treated with 1 mg/kg, 2 mg/kg, and 4 mg/kg PTL for 14 days. GSH and MDA levels were measured in rat testicular tissue after the last dose of PTL was administered. To determine the damage caused by PTX to testicular tissue by detecting 8-OHdG and iNOS, sections were prepared and examined histopathologically and immunohistochemically. Furthermore, the gene expressions and enzymatic activities of SOD, CAT, GPx, GST, and GR were investigated in all groups. After PTL treatment, MDA, 8-OHdG, and iNOS levels decreased while GSH levels increased in testicular tissue. Increased levels of antioxidant genes and enzymes also reduced oxidative stress. Additionally, the expression levels of the Dazl, Ddx4, and Amh genes, which are involved in gametogenesis and sperm production, decreased in case of toxicity and increased with PTL treatment. The data from this study show that PTL may have a therapeutic effect in the treatment of testicular damage by eliminating the oxidative stress-induced damage caused by PTX in testicular tissue, providing an effective approach to alleviating testicular toxicity, and playing an important role in reproduction/sperm production, especially at a dose of 4 mg/kg.


Assuntos
Paclitaxel , Sêmen , Ratos , Masculino , Animais , Paclitaxel/farmacologia , Sêmen/metabolismo , Estresse Oxidativo , Testículo , Antioxidantes/metabolismo
2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1525-1535, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37658214

RESUMO

Cervical cancer is among the most frequently observed cancer types in females. New therapeutic targets are needed because of the side impacts of existing cancer drugs and the inadequacy of treatment methods. Thioredoxin reductase 1 (TrxR1) is often overexpressed in many cancer cells, and targeting TrxR1 has become an attractive target for cancer therapy. This study investigated the anticancer impacts of diffractaic and vulpinic acids, lichen secondary metabolites, on the cervical cancer HeLa cell line. XTT findings demonstrated showed that diffractaic and vulpinic acids suppressed the proliferation of HeLa cells in a dose- and time-dependent manner and IC50 values were 22.52 µg/ml and 66.53 µg/ml at 48 h, respectively. Each of these lichen metabolites significantly suppressed migration. Diffractaic acid showed an increase in both the BAX/BCL2 ratio by qPCR analysis and the apoptotic cell population via flow cytometry analysis on HeLa cells. Concerning vulpinic acid, although it decreased the BAX/BCL2 ratio in this cells, it increased apoptotic cells according to the flow cytometry analysis results. Diffractaic and vulpinic acids significantly suppressed TrxR1 enzyme activity rather than the gene and protein expression levels in HeLa cells. This research demonstrated for the first time, that targeting TrxR1 with diffractaic and vulpinic acids was an effective therapeutic strategy for treating cervical cancer.


Assuntos
Furanos , Fenilacetatos , Tiorredoxina Redutase 1 , Neoplasias do Colo do Útero , Feminino , Humanos , Células HeLa , Neoplasias do Colo do Útero/tratamento farmacológico , Proteína X Associada a bcl-2 , Linhagem Celular Tumoral , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...